Sin x 的无穷乘积表达
注意到:
\[
\boxed{
\begin{aligned}
\sin\left(3x\right) &= 3\sin\left(x\right)-4\sin^3\left(x\right) \\
\sin\left(5x\right) &= 5\sin\left(x\right)-20\sin^3\left(x\right) + 16\sin^5\left(x\right) \\
&\cdots
\end{aligned}
}
\]
数学归纳容易证明
\[
\sin\left(\left(2n+1\right)x\right)=\sin x\cdot P\left(\sin^2\left(x\right)\right)
\]
这里 \(P\left(x\right)\) 是关于 \(x\) 的 \(n\) 次多项式。
又因为
\[
\lim_{x\to 0}\dfrac{\sin\left(\left(2n+1\right)x\right)}{\sin\left(x\right)}=2n+1
\]
因此 \(\left[x^0\right]P\left(x\right)=2n+1\)。
同时,\(\sin\left(\left(2n+1\right)x\right)\) 的根为 \(\dfrac{k\pi}{2n+1},k\in\mathbb{Z}\),因此 \(\sin^2\left(\dfrac{k\pi}{2n+1}\right),k=1,2,\ldots,n\) 为 \(P\left(x\right)\) 的 \(n\) 个根,即
\[
\begin{aligned}
P\left(x\right) &= \left(2n+1\right)\prod_{k=1}^{n}\left(1-\dfrac{x}{\sin^{2}\left(\dfrac{k\pi}{2n+1}\right)}\right) \\
\dfrac{\sin\left(\left(2n+1\right)x\right)}{\sin\left(x\right)} &= \left(2n+1\right)\prod_{k=1}^{n}\left(1-\dfrac{\sin^2\left(x\right)}{\sin^{2}\left(\dfrac{k\pi}{2n+1}\right)}\right) \\
\dfrac{\sin\left(\left(2n+1\right)x\right)}{\left(2n+1\right)\sin\left(x\right)} &= \prod_{k=1}^{n}\left(1-\dfrac{\sin^2\left(x\right)}{\sin^{2}\left(\dfrac{k\pi}{2n+1}\right)}\right) \\
\dfrac{\sin\left(x\right)}{\left(2n+1\right)\sin\left(\dfrac{x}{2n+1}\right)} &= \prod_{k=1}^{n}\left(1-\dfrac{\sin^2\left(\dfrac{x}{2n+1}\right)}{\sin^{2}\left(\dfrac{k\pi}{2n+1}\right)}\right) \\
\end{aligned}
\]
令 \(n\to\infty\),有
\[
\dfrac{\sin\left(x\right)}{x} = \prod_{k=1}^{\infty}\left(1-\dfrac{x^2}{k^2\pi^2}\right)
\]