牛顿恒等式
设
\[
P\left(x\right)=\sum_{k=0}^{n}a_{k}x^{k}
\]
记 \(P\left(x\right)\) 的根为 \(\alpha_{k},k=1,2,\ldots,n\),定义 \(S_{i}=\sum \alpha_{k}^{i}\),并且令
\[
\begin{aligned}
\sigma_1 &= \sum\alpha_{i} = -\dfrac{a_{n-1}}{a_{n}} \\
\sigma_2 &= \sum\alpha_{i}\alpha_{j} = \dfrac{a_{n-2}}{a_{n}} \\
\sigma_3 &= \sum\alpha_{i}\alpha_{j}\alpha_{k} = -\dfrac{a_{n-3}}{a_{n}} \\
&\vdots \\
\sigma_n &= \alpha_{1}\alpha_{2}\cdots\alpha_{n} = \left(-1\right)^{n}\dfrac{a_0}{a_{n}}
\end{aligned}
\]
则有
\[
\begin{aligned}
S_{0} &= n \\
S_{1} &= 1\cdot\sigma_{1} \\
S_{2} &= \sigma_{1}S_{1}-2\cdot\sigma_{2} \\
S_{3} &= \sigma_{1}S_{2}-\sigma_{2}S_{1}+3\cdot\sigma_{3} \\
&\vdots \\
S_{n-1} &= \sigma_{1}S_{n-2}-\sigma_{2}S_{n-3}+\cdots+(-1)^{n-3}\sigma_{n-2}S_{1}+(-1)^{n-2}\cdot(n-1)\cdot\sigma_{n-1} \\
&\vdots \\
S_{m} &= \sum_{k=1}^{n}(-1)^{k+1}\sigma_{k}S_{m-k}
\end{aligned}
\]
这里 \(m\geqslant n\)。
更简洁地
\[
\boxed{
S_{m} =
\begin{cases}
n, & m=0
\\
\begin{aligned}
(-1)^{m+1}\cdot\sigma_{m}\cdot m+\sum_{k=1}^{m-1}(-1)^{m-1}\sigma_{k}S_{m-k}
\end{aligned}, & 1\leqslant m\lt n
\\
\begin{aligned}
\sum_{k=1}^{n}(-1)^{k+1}\sigma_{k}S_{m-k}
\end{aligned}, & m\geqslant n
\end{cases}
}
\]
当 \(n\) 为正无穷时,公式的第二行仍有意义。